
12.1

Chapter 12: Traversing Data Using JQuery

12.0.1 Objectives

This unit introduces the basics of the jQuery library. Many webpages today use jQuery to create
interactive features, and familiarity with jQuery will allow students to understand a large number of
programming resources on the internet. Students will learn the concept of a jQuery selection, and use
jQuery methods and events to create a simple interactive program.

12.0.2 Topic Outline

12.0 Chapter Introduction
12.0.1 Objectives
12.0.2 Topic Outlines
12.0.3 Key Terms
12.0.4 Key Concepts

12.1 Lesson Plans
12.1.1 Suggested Timeline
12.1.2 CSTA Standards
12.1.3 Lesson Plan I using the Timer () program.
12.1.4 Lesson Plan II on traversing an array.

12.0.3 Key Terms

JQuery JQuery Object

CSS Selector JQuery Method

Turtle library set

Arguments method

12.0.4 Key Concepts

Introduction to jQuery

JQuery is the most popular library used in web pages because it is a convenient way to examine and alter
visual elements. Here is an example using jQuery.

$('div').hide();

Each use of jQuery has three steps:

1. A CSS Selector is used to find a set of elements on the page.
2. A jQuery Object is created representing the set of elements.
3. A jQuery Method is called to do some operation on the set of elements.

In this example, 'div' is the CSS selector, $('div’) is the jQuery object, and .hide() is the jQuery method.
This line of jQuery code means: “Find all the <div> elements on the page and then hide them.”

Querying databases involves a three-step process of finding, gathering, and manipulating. JQuery applies
this database technique to the interface elements of an HTML page, treating a single page as a database.

12.2

Creating jQuery Objects with $

The function that creates jQuery objects is the most important function in the jQuery library. Because it is
used so often, the jQuery library provided a short and unusual name for this function: $. Although it may
look strange, $ is just a regular function name that happens to use a symbol.

A jQuery object holds a set of elements: the set may contain zero, one, or multiple elements on the page.
Here are some example uses of $:

jQuery constructor Creates a jQuery object containing this set.

$('p') All the <p> elements in the document.

$('.special') All the elements with class="special" in the document.

$('#buy') The element with id="buy" in the document.

$('') A new element with the given src, not yet inserted into the
document.

$('<p>Hello</p>') A new <p> element with the given text content, also not yet inserted
into the document.

The CSS selector language used to find elements with $ is the same language used in CSS, so anything
you learn about CSS selectors can also be used in jQuery. If no elements match a selector, the function
returns the empty set.

The $ function can also create elements using HTML syntax (such as in the last two examples above). In
this case, it returns a set containing one newly-created element, not yet placed in the visible document.

A jQuery object has a .length attribute that gives the size of the set. For example you can use the
expression $('p').length to count the number of <p> elements in the document.

Using jQuery Objects

There are a number of methods that can be used to operate on any jQuery object. Some examples:

$('p').fadeOut(); Smoothly fades the elements, then hides them.

$('p').css({ background: red }); Alters the CSS styling of all selected elements.

$('p').html('Read this'); Replaces the HTML content of all selected elements.

var t = $('p').text(); Reads text content of the first selected <p> element.

$('input').val(10); Set the value within all the selected <input> boxes.

var v = $('input').val(); Reads the value of the first selected <input> element.

12.3

$('img).attr({src: '/img/cat'}); Changes every src attribute to “/img/cat”.

$('').appendTo('body'); Creates a dog image and adds it to the <body>.

$('#warn').remove(); Removes the element with id=”warn”.

$('img').bk(100); Use the turtle “bk” function to move all s.

Students who have used Pencil Code will find jQuery familiar because every Pencil Code turtle is a
jQuery object. The Pencil Code turtle library is an extension to jQuery that adds a number of turtle
methods such as “pen”, “fd”, “bk”, “rt”, and “moveto” to the set of jQuery methods. Programmers can use
these methods to move any visual element on the screen.

The main turtle can be accessed using the jQuery call $('#turtle'), so the CoffeeScript program “fd 100”
from the very first section of this book is the same as JavaScript and jQuery program $('#turtle').fd(100).

Experimenting with jQuery

It is helpful for students to experiment with individual jQuery methods. Using the “gear” menu, they can
create a Pencil Code project that includes the following HTML.

<html>
 <body>
 <h1>My favorite things</h1>
 <p>Pizza: </p>
 <p>Watermelon: </p>
 </body>
</html>

There are enough elements in this document to try each of the jQuery examples above. Students can
enter the jQuery code directly into the “Test panel” on the right pane of Pencil Code, or they can enter the
code to run in a JavaScript or CoffeeScript program on the left.

There are two things to notice with jQuery:

1. Changes are usually made as soon as you run the code, although some changes can be
animated over time.

2. Although the changes you make affect the visible document, they do not change the HTML of the
program itself.

The HTML in a program is the “starting state” of the HTML page. Once a program adds, removes, or
alters elements, it can end up looking different from the HTML page the programmer originally wrote - but
if the program is run, it will start with the original HTML.

Using jQuery to Provide Dynamic Output

JQuery is useful for creating user interfaces with a screen of dynamic output that changes over time. For
example, with jQuery, you can keep a timer and update a number every second. Here is a JavaScript
program that does this.

12.4

$('<h1>Countdown</h1>').appendTo('body');
$('h1').css({textAlign: 'center'});
var count = 10;
forever(1, function() {
 $('h1').html(count);
 count -=1;
 if (count < 0) {
 $('h1').html('blast off!');
 stop();
 }
});

This program uses “forever” to set up a function that is called once per second until stop() is called. Here
is an explanation of each of the jQuery calls in the program.

$('<h1>Countdown</h1>').appendTo('body'); Creates an <h1> element and adds it to the <body>.

$('h1').css({textAlign: 'center'}); Sets the CSS of the <h1> so its “text-align” is “center”.

$('h1').html(count); Changes the HTML contents of the <h1> with a variable.

$('h1').html('blast off!'); Changes the HTML contents of the <h1> to “blast off!”d.

jQuery allows a program to provide real-time information on the screen by updating the contents of any
visual element.

Using jQuery Events to Collect User Input

In previous sections of this manual, input was collected by handling clicks in on-screen buttons. JQuery
makes it simple to collect input events on any set of elements using the “.on” method. Here is an
example.

$('h1').on('click', function(e) {
 log('You clicked on an h1');
}

The first argument of the “on” method is the event name and the second argument is the event handler
function. These event handlers are the same as those used since Chapter 3. The main difference here is
that it is easy to connect the same event handler to a whole set of elements at once. It is also easy to

handle events other than the “click” event. Here is a partial list of events that can be handled this way.

$('h1').on('click', function(e)...) e.pageX and e.pageY represent the page coordinates of
the click.

$('h1').on('dblclick',
function(e)...)

e.pageX and e.pageY are coordinates of a double-click.

$('h1').on('mousemove',
function(e)...)

e.pageX and e.pageY are coordinates of mouse motion.

12.5

$('h1').on('keydown',
function(e)...)

e.which is the numeric code of a key being pressed.

$('h1').on('keydown',
function(e)...)

e.which is the numeric code of a key being released.

Many other events can be captured; their names and descriptions can be found on the Web.

Combining Input and Output with jQuery

Students can create useful interactive interfaces by combining input and output with jQuery. For example,
the program below combines an on('click') event handler with .rt and .attr so that the image is spun and
switched whenever it is clicked.

var trees = [

 '/img/elm-tree',

 '/img/maple-tree',

 '/img/pine-tree',

 '/img/cypress-tree',

 '/img/oak-tree'

];

$('').appendTo('body');

$('img').on('click', function() {

 $('img').rt(360);

 $('img').attr('src', random(trees));

});

12.1.1 Suggested Timeline: 1 55-minute class period

Instructional Day Topic
2 Days Lesson Plan I

2 Days Lesson Plan II

12.1.2 Standards

CSTA Standards CSTA Strand CSTA Learning Objectives Covered

Level 3 B
(Grades 9 – 12)

Collaboration (CL) Use project collaboration tools, version control systems,
and Integrated Development Environments (IDEs) while
working on a collaborative software project.

Level 3 A
(Grades 9 – 12)

Computing Practice
Programming
(CPP)

Use advanced tools to create digital artifacts (e.g., Web
design, animation, video, multimedia)

Level 3 A
(Grades 9 – 12)

CPP Create and organize Web pages through the use of a
variety of Web programming design tools.

12.6

12.1.3 Lesson Plan I

This lesson plan focuses on designing programs using JQuery commands using the timer program.

Content details Teaching Suggestions Time
Code:

$('<h1>Countdown</h1>').appendTo('
body');
$('h1').css({textAlign:
'center'});
var count = 10;
forever(1, function() {
 $('h1').html(count);
 count -=1;
 if (count < 0) {
 $('h1').html('blast off!');
 stop();
 }
});

Output

Step 1. Demonstrate the timer
program.

Step 2. Point out the key
concepts where the various
jQuery commands are explained.

Step 3. Explain to the students
that the $ symbol calls a function.

Step 3. Show the commands and
their explanation and alt-tab
between output and the actual
program.

Step 5. Encourage students to
tinker with the code and modify
it.

Demonstration:
15 minutes

Student Practice:
30 minutes

http://teachersguide.pencilcode.net./edit/chapter12/timer

12.7

12.1.4 Lesson Plan II

This lesson plan demonstrates the power of JQuery for traversing data stored in arrays. It addresses
traversal and showing data storage in 1D Arrays.

Content details Teaching Suggestions Time
Code:

var trees = [
 '/img/elm-tree',
 '/img/maple-tree',
 '/img/pine-tree',
 '/img/cypress-tree',
 '/img/oak-tree'
];
$('<img
src="/img/tree">').appendTo('body');
$('img').on('click', function() {
 $('img').rt(360);
 $('img').attr('src', random(trees));
});

Output

Step 1. Demonstrate the magicTree
program.

Step 2. Show students how the click
function responds to the mouse
click.

Step 3. Point out the array named
trees.

Step 4. Point to the appendTo

jQuery command.

Step 5. Encourage students to
modify the contents of the array and
notice the various kinds of images
that can be displayed.

Step 6. Encourage students of try
other jQuery commands in the code
and see the results.

Demonstration:
15 minutes

Student Practice:
30 minutes

http://teachersguide.pencilcode.net/edit/chapter12/magicTree

